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We predict heat transfer enhancement through dense homogeneous suspensions of agitated solids in
conductive fluids by coupling the fluid and solid phases through a volumetric source term. The enhance-
ment is governed by a Damköhler number demarcating an ‘‘exchange limit” where the source term dom-
inates, and a ‘‘diffusion limit” set by the ability of agitated particles to self-diffuse. We point out effects of
particle ordering on mixture conductivity and volumetric heat exchange rate, carry out thermal simula-
tions to justify the form of these terms, and model further enhancements from gas velocity fluctuations
induced by solids of high agitation.
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1. Introduction

Heat transfer in fluid flows heavily laden with solid particles is
crucial to processes in the chemical, mining, power, pharmaceuti-
cal, food and oil industries, as well as in the combustion of solid
fuels. Accordingly, heat transfer in gas-solid mixtures has been
the object of several experiments, see for example Glicksman [1]
and Molerus and Wirth in fluidized beds [2], Jepson, Poll and Smith
[3] in pneumatic transport, and Patton, Sabersky and Brennen [4]
and Natarajan and Hunt [5] in granular flows. Numerical simula-
tions also began to address how idealized particles exchange heat
with a wall and the surrounding fluid [6].

In Part I of this paper, we consider homogeneous dense suspen-
sions of agitated particles in a gas. For simplicity, we restrict atten-
tion to systems in which there is no difference between the
average velocity of the solids and gas. By agitation we mean that
particles have significant fluctuation velocities about the average.
For nearly spherical particles with relatively large Stokes number
[7–9], these fluctuations arise from inter-particle collisions. This
has led to theories in which the particle phase is modeled with ele-
ments of the kinetic theory, while the flow is assumed to be lami-
nar [10] or turbulent [11–15]. In such flows, particle agitation is
measured with the ‘‘granular temperature” H � ð1=3Þv0iv0i, where
v0i is the particle fluctuation velocity in the cartesian direction i. It
is with this parameter that the solid phase can transmit momen-
tum through an effective viscosity. The granular temperature owes
its name to an analogy with the translational temperature that is
defined in the kinetic theory for a gas of hard spheres. Thus, H
ll rights reserved.
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bears no relation to the usual thermal temperature of the solids,
which we will later denote with the distinct symbol Ts.

Collisions also give rise to an effective conductivity of the solid
phase that enhances the net transfer of thermal energy [16]. How-
ever, as Sun and Chen showed [17], individual impacts are too
short in most cases to permit the conduction of any significant heat
between particles during their ephemeral contact. Instead, the col-
lisional enhancement of the thermal heat flux first involves an ex-
change of heat with the gas, and then the gas transfers its energy to
the wall. Accordingly, Louge, Mohd. Yusof and Jenkins developed a
theory that identifies distinct thermal temperatures for the gas and
solids phases [18]. Its mechanism is twofold.

First, the granular agitation induces the self-diffusion of solid
particles [19] across regions with different thermal temperatures.
This transport is not driven by a gradient of particle concentration,
but it is responsible for the effective conductivity of the agitated
solid phase. If the latter possesses a gradient of thermal energy,
particle self-diffusion can drive a heat flux through it, even if the
solid concentration is uniform. Second, because particles have a fi-
nite thermal inertia, they do not adopt instantly the temperature of
the surrounding gas. The resulting temperature difference then
drives a thermal exchange between gas and solids.

Near the wall, this exchange amplifies the gas temperature gra-
dient, as particles from warmer regions, for example, bring energy
closer to a cold wall than what the conductivity of the gas would
alone accomplish. Thus, although agitated solids do not themselves
exchange any heat with the wall during their direct, ephemeral
contact with it, their self-diffusion from other regions can raise
the heat transfer through the gas.

Therefore, in this view, the overall heat transfer at the wall de-
pends on the energy exchanged between gas and solids with dis-
tinct thermal temperatures, as well as on the magnitude of the
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Nomenclature

a0 vibration amplitude
am, bm, cm, dm constants in Eq. (48)
A, As grain surface areas
A1, A2, A3 functions in Eq. (4)
cg, cs fluid, solid specific heats per mass
d grain diameter
Ds granular self-diffusivity
e normal restitution coefficient
E1, E2, E� stiffnesses
f, fc vibration, impact frequencies
g0, g12 wall, binary pair distributions
h heat transfer coefficient
h11, g11 functions in Eq. (27)
H volumetric rate of heat exchange
i, j, k indices
Ia, Im integrals in Eqs. (29) and (31)
kg, ks gas, solid thermal conductivities
keff effective thermal conductivity
kt, kgt turbulent, total fluid conductivities
Kg, Ks mixture, solid-phase conductivities
Kgt augmented mixture conductivity
‘� dimensionless decay length of H
L channel width
Ly dimensionless length scale in Eq. (16)
L0 reference width in Eq. (48)
M constant in j from Eq. (58)
n particle number density
N number of spheres
q0, q clear gas, suspension wall heat fluxes
qD, qE wall flux in diffusion, exchange limits
_qs heat rate
Q0, Q cumulative heat exchanged
r radial coordinate
Rdiss dissipation function [7,8]
S wall, strip areas
t time
Tg, Ts gas, solid thermal temperatures
Tþ, T� temperatures at y ¼ �L=2
v0i, u0i particle, fluid fluctuation velocities
Vs sphere volume within a strip
w�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H=H0

p
xi i-coordinate
x, y, z cartesian coordinates

yc sphere center coordinate

Greek symbol
as granular thermal diffusivity
a1 function in Eq. (27)
cvis, c granular energy viscous, collisional dissipation rates
Cu strain rate
�m non-continuum lubrication parameter
f relative distance to first center (Eq. (25))
h1, h2 functions in Eq. (27)
H, H0 granular temperatures
j conductivity of granular fluctuation energy
ks, kg grain, gas mean free paths
l fluid viscosity
lt eddy viscosity
m solid volume fraction
ns ks=kg

nst ks=kgt

ni roots of n= tan n ¼ 1� Bi
qg, qs fluid, solid material densities
r1, r2 Poisson’s ratios
s flow characteristic time
sc, se collision, contact conduction times
x constant in Eq. (55)

Dimensionless groups
Bi Biot number
Da Damköhler second ratio
Fo, Foc Fourier numbers
Kn Knudsen number
Les granular Lewis number
Nu, NuL particle, channel Nusselt numbers
Nueff effective particle Nusselt number
Pr Prandtl number
Prt turbulent Prandtl number
Re particle Reynolds number
St, Stc Stokes numbers

Scripts
y, � dimensionless
� oscillating quantity
g, s gas, solid
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self-diffusion of the agitated grains. It is the competition between
these two rate-limiting processes near the wall that determines
the regime of heat transfer enhancement that is observed there.

Another approach is to regard the suspension as a medium en-
dowed with a single thermal temperature and an enhanced mix-
ture thermal conductivity [20]. While useful in the bulk, that
approach requires a regularization of the thermal boundary condi-
tion at a wall to account for the role of particle agitation [21]. As we
will show, it is only appropriate in the limit where diffusion
dominates.

In Part I of this paper, we first examine the competition be-
tween thermal exchange and particle self-diffusion with a generic
analysis of agitated spherical grains suspended in a fluid. By anal-
ogy with the second Damköhler ratio, we derive a number gauging
the relative importance of the two mechanisms.

Using relatively crude numerical simulations, we then test the
origin of the thermal exchange rate and the role of the Biot and
Fourier numbers for individual grains. Near the flat wall, we show
that the exchange is affected by the pair distribution at contact,
which induces spatial fluctuations of available surface area and
volume. We model the role of the conductive grains in enhancing
the static mixture conductivity in the continuous phase. Finally,
we identify phenomena that complicate our generic analysis at
high solids agitation by augmenting the effective gas conductivity
in the wake of moving grains.

In Part II, we will describe an experiment designed to test the
theory with a vibrated box heavily laden with macroscopic spher-
ical grains. Because energetic vibrations are required to maintain
the grains agitated in the presence of gravity, particle self-diffusion
is so intense that the experiment resides in the ‘‘exchange limit”,
where heat transfer enhancement is set by the volumetric rate of
energy exchanged between gas and solids. The high granular agita-
tion also augments the mixture conductivity and the rate of heat
transfer between individual grains and the gas by raising parti-
cle-induced gas velocity fluctuations.

We will focus on the ‘‘diffusion limit” in Part III. There are
roughly two ways to reach this limit. The first, which employs
macroscopic grains, would be to carry out experiments in micro-
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gravity, so that agitation could be reduced without collapsing the
suspension. The second is to shrink the system size. In Part III,
we will illustrate the latter by considering colloidal suspensions
of nanoparticles.

We begin Part I by illustrating the exchange and diffusion limits
with a simple analysis of the heat transfer enhancement at a wall
confining a fluid laden with agitated particles.

2. Generic model of thermal enhancement

Consider a uniform suspension of grains of diameter d, material
density qs, material conductivity ks and material specific heat cs

agitated at a constant ‘‘granular temperature” H in a fluid of ther-
mal conductivity kg between two infinite parallel flat walls sepa-
rated by a distance L. We set the origin midway between the
walls located at y ¼ �L=2. Variables are only function of the ther-
mal gradient direction y, the phenomenon is steady on time scales
� d=

ffiffiffiffiffi
H
p

, and there is no mean relative velocity between grains
and fluid. On planes of constant y, the average thermal tempera-
ture of the fluid is Tg and that of the grains is Ts. The uniform solid
volume fraction is m and the number density of grains is
n ¼ 6m=pd3.

In this simple picture, the thermal energy ODEs for the fluid and
granular phases are, respectively,

0 ¼ � d
dy

�Kg
dTg

dy

� �
þ H; ð1Þ

and

0 ¼ � d
dy
�Ks

dTs

dy

� �
� H; ð2Þ

where H is the average volumetric rate of thermal energy given by
the grains to the fluid, Kg is the conductivity of the gas–solid mix-
ture, and Ks is the effective conductivity of the granular phase.
We will revisit these thermal governing equations in Part III, for
cases in which m is no longer uniform.

Grains of Biot number Bi � hðd=2Þ=ks � 1 have nearly uniform
internal temperature Ts. By exchanging heat with their surround-
ings through the surface of area A ¼ pd2 at a convection coefficient
h, they contribute, on average, to a volumetric rate [5,18,20,21]

H ¼ nAhðTs � TgÞ ¼ 12m
kg

d2 NuðTs � TgÞ; ð3Þ

where for now, we take the grain surface area nA available for heat
exchange with the fluid in a unit volume to be invariant, and the
Nusselt number Nu � hðd=2Þ=kg to be unity and to be based on
the molecular conductivity kg of the gas. We will re-examine these
assumptions later.

We distinguish the mixture conductivity Kg of the fluid phase
from the material conductivity kg of the pure fluid. While kg is
invariant, Kg is affected by the presence of particles. At negligible
agitation, it is well approximated by homogenization models in-
spired by that of Maxwell [22]. For spherical grains, we adopt the
semi-empirical expression of Meredith and Tobias [23] for Kg,
which is equivalent to Maxwell’s original model at low m and
ns � ks=kg, but performs better at m > 0:1 and ns > 10 [24],

Kg

kg
¼ A1 � 2mþ A2 � 2:133A3

A1 þ mþ A2 � 0:906A3
� fMðm; nsÞ; ð4Þ

where A1 ¼ ð2þ nsÞ=ð1� nsÞ, A2 ¼ 0:409 m7=3ð6þ 3nsÞ=ð4þ 3nsÞ, and
A3 ¼ 3m10=3ð1� nsÞ=ð4þ 3nsÞ. At high agitation, Kg is also influenced
by gas velocity fluctuations induced by the moving grains.

Granular agitation gives rise to self-diffusion of the grains with
coefficient [18,19]
Ds ¼
d
ffiffiffiffiffi
H
p

ð9
ffiffiffiffi
p
p
Þmg12

1
1þ 2Kn

� �
; ð5Þ

where g12ðmÞ is the pair distribution of colliding spheres ‘‘1” and ‘‘2”
at contact, which, for two identical spheres, is well represented by
the Carnahan and Starling expression [25]

g12 ¼
2� m

2ð1� mÞ3
; ð6Þ

as long as m stays below the ‘‘freezing” value 	49% [26]. In Eq. (5),
the term in parentheses is a correction for high Knudsen number
Kn ¼ ks=L that is significant when the granular mean free path
ks ¼ d=½6

ffiffiffi
2
p

mg12
 between consecutive impacts is on the order of
the vessel size L [18,27]. The self-diffusion leads to a thermal diffu-
sivity of the dispersed solid phase [18],

as �
Ks

qsmcs
¼ Ds=Les; ð7Þ

where Les � Dsqsmcs=Ks is a granular Lewis number that we take
equal to one.

The crucial assumption is that grains collide too quickly to ex-
change any significant thermal energy with each other or with
the wall [17,18]. As these references indicate, it is valid as long
as the time of particle contact in an impact

sc �
q2=5

s d

H1=10E�2=5 ð8Þ

is much smaller than the time to equilibrate the particle tempera-
ture by conduction through the area of contact

se �
q3=5

s E�2=5d2cs

H2=5ks
; ð9Þ

where E��1 � ½ð1� r2
1Þ=E1 þ ð1� r2

2Þ=E2
 is a reduced inverse stiff-
ness that combines the Young’s moduli Ei and Poisson’s ratios ri

for the two impact protagonists of indices 1 and 2. Thus, our
assumption is valid as long as sc � se or, equivalently, when

q1=5
s E�4=5dcs

H3=10ks
� 1: ð10Þ

For spheres engaged in violent, non-Hertzian impacts, the experi-
ments of Ben-Ammar et al. [28] indicate how plastic yield can de-
crease se, thus making it more difficult to uphold condition (10).

We solve Eq. (1)–(3) subject to the following boundary condi-
tions at the two confining walls: prescribed fluid temperatures,

Tgðy ¼ �L=2Þ ¼ T�; ð11Þ

and vanishing fluxes of thermal energy through the solid phase or,
with Ks 6¼ 0,

dTs

dy
ðy ¼ �L=2Þ ¼ 0; ð12Þ

which reflect the lack of direct thermal energy transfer in ephem-
eral collisions between the grains and the wall. Defining the dimen-
sionless thermal temperatures of the fluid and solid phases

Tyg;s �
Tg;s � ðTþ þ T�Þ=2
ðTþ � T�Þ

; ð13Þ

and the dimensionless distance yy � y=L, we write the solution as

Tys ¼
yyLy coshðLy=2Þ � sinhðyyLyÞ

Ly coshðLy=2Þ þ 2ðKs=KgÞ sinhðLy=2Þ
; ð14Þ

and

Tyg ¼
yyLy coshðLy=2Þ þ ðKs=KgÞ sinhðyyLyÞ
Ly coshðLy=2Þ þ 2ðKs=KgÞ sinhðLy=2Þ

; ð15Þ
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Fig. 1. Dimensionless profiles of fluid and solids temperature, respectively Tyg
(dashed lines) and Tys (solid lines), along yy (top three graphs), and flux ratio q=q0

versus Ks=Kg (bottom graph) for Kg=kg ¼ 1:13 and L=d ¼ 8, corresponding to
spheres of 3.18 mm uniformly agitated in a box with distance from hot to cold walls
of 25.4 mm containing air and solids ðks=kg 	 6Þ at a volume fraction m ¼ 6:5%, like
experiments described in Part II. We ignore for now the augmentation of Kg or kg by
solids agitation, and take Nu ¼ 1. Circles on the bottom curve indicate the three
distinct values of Ks=Kg for the top profiles. The corresponding Damköhler numbers
are, from left to right, Da ¼ 12, 0.7 and 0.07.
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where the dimensionless scale of the system is

Ly � L
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12mNu

kg

Kg
þ kg

Ks

� �s
: ð16Þ

In the absence of particles, the temperature would vary linearly be-
tween y ¼ �L=2. Therefore, with a pure fluid, the heat flux at either
wall would be

q0 ¼ �kg
dTg

dy

����
�y=2
¼ �kg

ðTþ � T�Þ
L

: ð17Þ

Our assumption is that particles do not contribute to the heat flux q
through the wall during their ephemeral contacts with the latter.
However, they affect the mixture conductivity. Thus, with particles,
the wall flux is

q ¼ �Kg
dTg

dy

����
�y=2

: ð18Þ

Then, differentiating Eq. (15), the thermal enhancement can be
written as the ratio

q
q0
¼ Kg

kg

� � 1þ Ks
Kg

1þ Ks
Kg

tanhðLy=2Þ
ðLy=2Þ

0@ 1A: ð19Þ

This expression may be interpreted as a dimensionless effective
conductivity of the suspension, or as an overall Nusselt number
based on the channel’s half-width, NuL � keff=kg � q=q0. Because
the mixture is at rest, Ts and Tg vary only along y, and, unlike lam-
inar convection in a pipe, NuL remains the same whether a constant
flux, or a constant temperature, is imposed at the wall. The first
term in Eq. (19), Kg=kg, represents changes in the mixture fluid con-
ductivity due to the mere presence of particles. This can arise from
conduction through the grain material, as captured by static
homogenization models (Section 3.1), or from changes in the fluid
conductivity associated with, for example, fluid velocity fluctua-
tions induced by grain agitation (Section 3.4).

The second term in parentheses represents the additional
enhancement due to granular thermal self-diffusion. Because
grains do not transfer any appreciable heat directly to the wall,
their self-diffusion can only increase the overall heat transfer,
once they have exchanged heat with the surrounding fluid. By
analogy with diffusion flames, where either chemical kinetics
or diffusion can be rate-limiting, we define a Damköhler second
ratio

Da � ðKg=KsÞðLy=2Þ
tanhðLy=2Þ

: ð20Þ

Values of Da! 0 occur in flows with considerable granular agita-
tion ðKs � KgÞ. In this limit, Ly and q=q0 become independent of Ks,

qE

q0
� lim

Ks=Kg!1

q
q0

� �
¼ Kg

kg

� �
ðLy=2Þ

tanhðLy=2Þ
; ð21Þ

so that agitation is not rate-limiting. Instead, for a given Kg and in a
vessel of finite size, because

oðqE=q0Þ
ðqE=q0Þ

¼ oLy

Ly

 !
1� Ly

sinh Ly

 !
	 oLy

Ly
¼ 1

2
oH
H

ð22Þ

the ratio qE=q0 is governed by the grains’ ability to exchange heat
with the surrounding fluid through H in Eqs. (1) and (2). We call this
regime the ‘‘exchange limit.”

In contrast, values of Da� 1 occur in systems where the vessel
size greatly exceeds the particle diameter ðLy � 1Þ. Here, q=q0 be-
comes independent of Ly or H,
qD

q0
� lim

Ly!1

q
q0

� �
¼ Kg

kg
þ Ks

kg

� �
; ð23Þ

and it is no longer necessary to distinguish the thermal tempera-
tures of the fluid and solid phases, Tg ’ Ts. In this regime, which
we call the ‘‘diffusion limit,” the heat flux ratio increases with the
conductivity Kg of the fluid-solid mixture augmented, if particles
are sufficiently agitated, by the self-diffusive conductivity Ks. If they
are not,

lim
Ks!0

qD

q0

� �
¼ Kg

kg

� �
: ð24Þ

As we will discuss in Part III, Eqs. (23) or (24) are relevant to suspen-
sions of nanoparticles. The diffusion limit, for which Ks matters but
not H, should also be accessible in microgravity suspensions of mac-
roscopic grains, where relatively modest agitation can be generated
without collapsing the suspension.

Fig. 1 illustrates the transition between the two limits and the
corresponding dimensionless profiles of fluid and grain thermal
temperatures. In the diffusion limit with large Da, profiles of fluid
and solid thermal temperatures are identical except near the walls
(Fig. 1, top left). As Da decreases, the distinction becomes more
pronounced (Fig. 1, top middle). In the exchange limit with small
Da, solids have considerable self-diffusive conductivity Ks, and
thus exhibit nearly uniform temperature between hot and cold
walls (Fig. 1, top right). By exchanging heat with the fluid, solids
in the exchange limit steepen the fluid temperature gradient at
the wall, and thus raise the wall heat transfer. For given m and
L=d, further steepening can occur if Kg or kg are augmented by par-
ticle-induced fluid velocity fluctuations (Section 3.4).

3. Complications

The picture presented in the previous section is complicated by
local ordering induced by the flat thermal walls, and by the possi-
ble creation of fluid velocity fluctuations by fast-moving particles.
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Such fluctuations affect H by raising the heat transfer coefficient
around individual spheres. The ordering modifies the mixture con-
ductivity Kg and the source term H by altering the available parti-
cle surface and volume. It is captured by theories for the pair
distribution of hard spheres interacting with the wall. We consider
the role of such ordering first. To avoid further complications, we
ignore a particle size distribution, which would lead to segregation
[9].

3.1. Available surface and volume

Because H / nA, the source term in Eqs. (1) and (2) depends on
the external surface area that each grain has available to exchange
heat with the surrounding fluid. Similarly, the homogenized
expression for Kg varies with local solid volume fraction. The
ordering of spherical grains induced by our flat thermal walls pro-
voke local oscillations of the probability to find particle centers
within a given distance from such walls. In turn, these spatial vari-
ations let the grain surface area per unit volume fnA and the frac-
tion of the volume occupied by solids, which appears in Eq. (4),
oscillate as well.

The oscillations, which we denote by a tilde, are captured by
theories pioneered by Percus and Yevick (PY) [29,30] for hard
spheres. For simplicity, we assume that the ‘‘bulk” solid volume
fraction m is invariant near the wall, and that any quantity varies
only with y, the coordinate normal to and, in this case, originating
at the wall. Because hard spheres cannot penetrate the latter, their
centers lie at y > d=2, and it is convenient to define the dimension-
less distance f to the center of spheres touching the wall,

f � y
d
� 1

2
: ð25Þ

The PY theory calculates the elementary number of spheres dN with
centers in the range f 2 ½f; fþ df
 per unit area S of the wall as

dN
S
¼ 6

pd2 mg0ðf; mÞdf; ð26Þ

where g0 is the spatial distribution of hard spheres interacting with
the flat wall. Lack of penetration implies g0 ¼ 0 for f < 0.

The theory of Henderson, Abraham et al. [31] predicts the form
of g0,

g0ðf; mÞ ¼ 1þ 2m
ð1� mÞ2

� 3
5
m

10� 2mþ m2

1þ 2m
a1fþ

1
5
mð3h1 þ 2h2Þ

þ 12m
Z f

0
f0½a1ðf0 � fÞ þ h1 þ h2
h11ðf0Þdf0

þ 12m
Z 1þf

f
f0ðfþ 1� f0Þ3½h1 þ h2ðfþ 1� f0Þ
h11ðf0Þdf0;

ð27Þ

where h11ðf0Þ � g11ðf0Þ � 1, a1 � ð1þ 2mÞ2=ð1� mÞ4, h1 � �2mð1þ
m=2Þð1þ 2mÞ=ð1� mÞ4, and h2 � ma1=2. The function g11ðf0Þ is the
PY radial distribution function for a hard sphere, where
1 6 f0 < þ1 is the relative distance between sphere centers [30].
We calculate integrals in Eq. (27) numerically and, for convenience,
prepare an interpolated look-up table for g0 in terms of f and m.

We then calculate two quantities affecting heat transfer. The
first is the fraction ~m of the local volume that is occupied by solid
material. To find it, we note that a sphere with center at
f0 ¼ y0=d� 1=2 contributes a volume pd3½ð1=4Þ � ðf� f0Þ2
df to
the parallelepiped or ‘‘strip” of thickness d� df and surface area
S parallel to the wall with jf� f0 j < 1=2. Therefore, by summing
this volume over the number of spheres dN0 in Eq. (26) with
f0 2 ½f0; f0 þ df0
, and upon dividing by the strip volume Sdf� d,
we find the local oscillating ‘‘mass-averaged” solid volume fraction
at a given distance y ¼ ðfþ 1=2Þ � d from the wall
~mðfÞ ¼
Z fþ1=2

f0¼f�1=2

dN0pd3½ð1=4Þ � ðf0 � fÞ2
df
Sdf� d

� mImðf; mÞ; ð28Þ

where the integral

Imð
y
d

; mÞ � 6
Z þ1=2

f0�f¼�1=2

1
4
� ðf0 � fÞ2

� �
� g0ðf0; mÞdðf0 � fÞ ð29Þ

tends to unity as y=d!1.
The second oscillating quantity is the available heat exchange

surface area per unit volume. We note that a sphere with center
at f0 ¼ y0=d� 1=2 contributes pd=S to that quantity in the strip at
f. Then, the total exchange surface area per unit volume is

fnA ¼
Z fþ1=2

f0¼f�1=2

pd
S

� �
dN0 � 6m

d

� �
Iað

y
d

; mÞ; ð30Þ

where the integral

Iað
y
d

; mÞ �
Z þ1=2

f0�f¼�1=2
g0ðf0; mÞdðf0 � fÞ ð31Þ

also tends to unity as y=d!1.
We evaluate the integrals Im and Ia numerically with MATHEMATICA

for y > 0 subject to f0 > 0. Typically, direct evaluation of these inte-
grals converges well up to y=d � 4. We substitute fnA for nA in Eq.
(3) to capture the oscillating source term ~H near the wall. For sim-
plicity, we also assume that ~m may be substituted for m in Eq. (4) to
predict the spatial variations ~Kg of the local mixture thermal
conductivity,

~Kgðy=d; mÞ ¼ Kg½mImðy=d; mÞ
: ð32Þ

Fig. 2 compares the predictions of Eqs. (29) and (31) for Im and Ia

with Discrete-Element-Modeling (DEM) numerical simulations of
spheres agitated in a semi-infinite cubic domain with sinusoidal
vibrations in the direction x at the amplitude a0 against two flat
walls separated by a distance L, possessing another two parallel
flat walls at different thermal temperatures located at y ¼ �L=2,
and having periodic boundary conditions separated by L in the
third cartesian direction z. These is no gravity in this instance.
The DEM hard-sphere algorithm is described by Hopkins and
Louge [32].

As Fig. 2 shows, even at relatively large solid volume fractions,
Eqs. (29) and (30) capture effects of local ordering within the first
two to three sphere diameters from the wall with sufficient rela-
tive accuracy to predict fnA, ~Kg and ~H where oscillations in these
quantities matter. However, the theory predicts oscillations in Im
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Fig. 3. Partitioning of fluid and spheres in thermal simulations. The space around
the spheres is subdivided in identical ‘‘fluid strips” of uniform Tg parallel to the two
flat thermal walls at temperatures Tþ and T� . The fluid strip i0 has a cross-section
Sgði0Þ that excludes solid material. Spheres of finite Biot numbers (left) are
subdivided in equal ‘‘solid strips” of uniform Ts perpendicular to the imposed
mean temperature gradient and typically thinner than fluid strips. The cross-section
of solid strip k0 is Ssðk0 Þ. The axisymmetric exchange surface area between fluid strip
i and solid strip k of sphere j is Asði; j; kÞ. Because spheres move, this area is updated
at each DEM time step. Spheres with Bi ¼ 0 have uniform temperature Ts and thus
possess a single solid ‘‘strip,” k ¼ 1. Spheres of high Bi (right) are modeled as
concentric shells of identical thickness and uniform temperature; the exchange
surface area between the outer shell of sphere j and fluid strip i is Asði; jÞ. It is also
updated at every DEM time step.
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and Ia that are increasingly out of phase with DEM simulations as
y=d grows.

3.2. Source term

A difficulty with grains agitated in a fluid with thermal tem-
perature gradients is that they are subject to a complicated sur-
face temperature spatial distribution and time-history, even in
stationary systems. The grains can also exhibit internal temper-
ature gradients, unless their Biot number vanishes. In this con-
text, it is unclear a priori whether the source term is captured
by Eq. (3) under any circumstances. To address this question,
we model H by summing the contribution of all grains in a unit
volume to the heat exchanged between an individual sphere
and the surrounding fluid. We calculate the exchange using
the classical solution for unsteady conduction within a single
sphere immersed in an infinite fluid. We then conduct simple
thermal numerical simulations to evaluate the merits of this
approach.

We model agitated grains immersed in a fluid as thermally
independent spheres adopting an initial temperature Ts upon an
impact, and subsequently exchanging heat with a fluid of known
bulk temperature Tg, at a constant Nusselt number, and on a time
scale that is the inverse of the impact frequency

fc ¼
24ffiffiffiffi
p
p mg12

ffiffiffiffiffi
H
p

d
: ð33Þ

In this view, we write the heat exchanged in unit volume and time
as

~H ¼ nIað
y
d

; mÞdQ
dt

; ð34Þ

where Iaðy=d; mÞ is found in Eq. (31). dQ=dt is calculated from the
classical series solution for unsteady conduction in a sphere with
cumulative heat Q transferred to the fluid [33],

1
Q 0

� �
dQ
dFo
¼ 6

X1
i¼1

expð�n2
i FoÞ

½1� ð1=BiÞ þ ðni=BiÞ2

: ð35Þ

In this expression, the Fourier number based on sphere radius ren-
ders time dimensionless, Fo � 4kst=qscsd

2, and the total heat even-
tually transferred is Q0 ¼ ðp=6Þd3qscsðTs � TgÞ. The eigenvalues ni

are solutions of the equation n= tan n ¼ 1� Bi. To evaluate ~H, we
adopt a Fourier number

Foc ¼
4ks

fcqscsd2 ð36Þ

based on the grain mean free time 1=fc. Combining Eqs. (34) and
(35) with definitions of Nu and Bi, the source term becomes

~H ¼ 12m
kg

d2 NuðTs � TgÞIað
y
d

; mÞ �
X1
i¼1

2 expð�n2
i FocÞ

½Bi� 1þ n2
i =Bi


: ð37Þ

Unless the Fourier number is very large, it is sufficient to retain only
the first term in the series. For Bi < 6, the first eigenvalue is approx-
imated to a relative error <1% by n1 ¼

ffiffiffiffiffiffiffi
3Bi
p

½1� Bi=10þ
Bi2

=156þ oðBi3Þ
, where the term / Bi5=2 is inexact. Then, the source
term is approximated to better than 1% for Bi < 1:3 with

~H 	 12m
kg

d2 NuðTs � TgÞIað
y
d

; mÞ expð�n2
1FocÞ � ½1�

Bi
5
þ 3

520
Bi2

þ 99
13000

Bi3 þ oðBi4Þ
; ð38Þ

where terms of order higher than Bi are inexact. In the limit of van-
ishing Bi, and far enough away from the wall, Eq. (38) reduces to Eq.
(3).
Because ~Kg and ~H oscillate with distance from the thermal
walls, it is no longer possible to find an analytical solution of Eqs.
(1) and (2) subject to boundary conditions (11) and (12). Instead,
we employ MATLAB’s two-point boundary value solver bvp4c, in
which we calculate Iaðy=d; mÞ and Imðy=d; mÞ by interpolating look-
up tables for 0 6 y=d 6 4 and 0:001 6 m 6 0:5 and, for simplicity,
by truncating oscillations at large y=d setting Ia ¼ Im ¼ 1 for
y=d > 4, 8m.

3.3. Thermal simulations

In this section, we incorporate simple heat balances in the DEM
simulations to test the form of the source term ~H in Eq. (37) and
the role of ~Kg. Fig. 3 illustrates the partitioning of space used for
thermal balances in these simulations.

The gas temperature profile is obtained by solving the one-
dimensional transient heat conduction equation on fluid strips at
times imposed by the DEM simulation; in continuous form it is

qgcg
oTg

ot
¼ � 1

Sg

o

oy
�kgSg

oTg

oy

� �
þ H; ð39Þ

where qg and cg are, respectively, the density and specific heat per
mass of the fluid; Sgðy; tÞ is the cross-section area of planes at con-
stant y that is occupied by the fluid at time t (Fig. 3). Its complement
is the area intersected by spheres. In the discrete form of Eq. (39),
the volumetric rate of heat added to fluid strip i is

HðiÞ ¼ _qsðj; kÞ=VgðiÞ; ð40Þ

where

_qsðj; kÞ ¼
X
j2i

X
k2i

hAsði; j; kÞ½Tsðj; kÞ � TgðiÞ
 ð41Þ

is the rate of heat given by solid strip k of sphere j to fluid strip i. In
Eqs. (40) and (41), j 2 i indicates all spheres intersecting fluid strip i,
k 2 i refers to all solid strips of sphere j intersecting fluid strip i,
VgðiÞ is the fluid volume within strip i, h ¼ kgNu=ðd=2Þ is the heat
transfer coefficient, Tsðj; kÞ is the uniform temperature of solid strip
k within sphere j, TgðiÞ is the uniform fluid temperature of strip i,
and Asði; j; kÞ is the part of the external surface area of particle j that
resides in strip i and intersects solid strip k, see Fig. 3 (left). We em-
ploy the Tri-Diagonal Matrix Algorithm (TDMA) [34] to solve Eq.
(39) subject to the prescribed gas temperatures Tþ and T� at oppo-
site thermal walls.



15

5114 X. Chen, M. Louge / International Journal of Heat and Mass Transfer 51 (2008) 5108–5118
Knowing TgðiÞ, we use the TDMA again to solve at each DEM
time step the energy balance within each sphere j of moderate Biot
number subject to ðoTs=oyÞjy¼yc�d=2 ¼ 0 at both poles of j centered at
ycðjÞ. In continuous form, the sphere energy balance is

qscs
oTsðjÞ

ot
¼ � 1

SsðjÞ
o

oy
�ksSsðjÞ

oTsðjÞ
oy

� �
� _qsðjÞ; ð42Þ

where _qsðjÞ is given by Eq. (41) in discrete form and Ssðj; y; tÞ is the
cross-section area of sphere j cut by the plane of constant y at time t
(Fig. 3). In Eq. (42), TsðjÞ and _qsðjÞ both vary with y within sphere j
unless its Biot number vanishes. If it does, then sphere j with
Bi ¼ 0 is no longer subdivided in solid strips, but instead has a uni-
form temperature TsðjÞ.

For spheres of large Biot number, interior conduction is mostly
radial. Accordingly, we model it by dividing the sphere in concen-
tric shells of equal thickness and uniform temperature (Fig. 3,
right). We use again the TDMA to solve the heat conduction equa-
tion, which is, in continuous form

qscs
oTsðjÞ

ot
¼ � 1

r2

o

or
�ksr2 oTsðjÞ

or

� �
; ð43Þ

subject to symmetry at the sphere’s center

oTsðjÞ
or

����
r¼0
¼ 0; ð44Þ

and to the surface boundary condition

�ðpd2Þks
oTsðjÞ

or

����
r¼d=2

¼
X

i2j
hAsði; jÞ½Tsðj; r ¼ d=2; tÞ � TgðiÞ
; ð45Þ

where i 2 j denotes all fluid strips wetting sphere j, and Asði; jÞ is the
axisymmetric part of the external surface area of particle j that re-
sides in strip i, see Fig. 3 (right).

To reduce the computation time needed to reach steady state
thermal profiles, we start all simulations with an initial Tg varying
linearly between the two thermal walls at Tþ and T�, and with a
uniform Ts ¼ ðTþ þ T�Þ=2. Once steady-state has been reached, be-
cause TgðiÞ is effectively an average over the entire fluid strip i, it
fluctuates little with time despite particle agitation. We map its
counterpart for solids �Ts on the same fluid strip i by summing
the sensible energy that each sphere contributes to the strip,

�Ts

X
j2i

X
k2i

qscsV sði; j; kÞ ¼
X
j2i

X
k2i

qscsV sði; j; kÞTsðj; kÞ; ð46Þ
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Fig. 4. Dimensionless source term Hy vs. y=L. Circles are computed from thermal
simulations using Eq. (40) and 99 fluid strips; the dashed line on the left is the
prediction of Eq. (3) without spatial variations of m (it clearly fails near the walls);
the solid line is the prediction of Eq. (37) with actual oscillations ~m in ~Kg and fnA in ~H.
In Eq. (37), it is sufficiently accurate to retain only the first term in the series.
Conditions are m ¼ 10%, L=d ¼ 9:7, a0=d ¼ 0:1, and Nu¼ 1. Left graph: Bi ¼ 0
(uniform temperature imposed within each sphere consistent with the high solid
conductivity ks=kg ¼ 5900) and Fo ¼ 0:95; in the bulk, this leads to a relatively low
local Fourier number Fo 	 0:1, Ks=Kg 	 57, and Kg=kg 	 1:3. Right: simulations
using the method in Fig. 3 (right) with 10 shells; conditions are Bi ¼ 3:7 and
Fo ¼ 0:57, with Fo 	 0:1, Ks=Kg 	 94, and Kg=kg 	 0:91.
where V sði; j; kÞ is the sphere volume between the two latitudes
delimited by Asði; j; kÞ for Bi 6¼ 0 or Asði; jÞ for Bi� 1.

In addition to the relative vibration amplitude a0=d, the relative
box size L=d, its geometrical aspect ratios, m, and impact parame-
ters, thermal simulations are characterized by three dimensionless
numbers, namely the particle Nusselt and Biot numbers, and a glo-
bal Fourier number based on vibration frequency f,
Fo � 4ks=fqscsd2.

Fig. 4 shows the resulting source term, made dimensionless
using Hy � Hd2

=½kgðTþ � T�Þm
. At high Biot number (Fig. 4, right),
it is important to include the series correction term in Eq. (37),
generally truncated to first order, to predict Hy accurately. For this
correction, the appropriate Fourier number is based on local mean
free time, see Eq. (36). However, Hy hardly matters to heat transfer
at the wall when Bi� 1: because Hy / 1=Bi is low, the thermal
temperatures of fluid and solids are nearly decoupled. Thus, the
fluid temperature has a nearly straight profile between opposite
walls, irrespective of particle agitation or Damköhler number. Sim-
ilarly, if the spheres have the slightest agitation, their self-diffusion
ensures that Ts is independent of y=L. Effectively, Ly ! 0 as Bi!1.
Thus, consistent with Eq. (19), q=q0 	 Kg=kg. Therefore, solids with
Bi� 1 do not enhance the thermal flux at the wall. Instead, be-
cause ks=kg ¼ Nu=Bi < 1, they typically reduce the mixture thermal
conductivity, Kg < kg.

At low Biot numbers, the series term in Eq. (37) approaches
unity. This equation predicts ~H accurately again, as long as spatial
oscillations are considered with Iaðy=d; mÞ, see Fig. 4 (left). As the
dashed line in Fig. 5 shows, failing to capture Ia properly, for exam-
ple by adopting Eq. (3), over-estimates ~H at the wall, where the
thermal exchange between fluid and solids matters most. In the
exchange limit, Eq. (22) indicates that the flux ratio scales as
q=q0 / H1=2 / Nu1=2. Therefore, in this limit, the role of spatial
oscillations in reducing q=q0 is conveniently captured by an effec-
tive Nusselt number

Nueff � Nu� lim
Ks=Kg!1

~q
q0

� �� �2

= lim
Ks=Kg!1

q
q0

� �� �2

; ð47Þ

which may be substituted for Nu in Eq. (16) to predict ~q=q0 analyt-
ically from Eq. (19) without computing Im or Ia. In Eq. (47), which de-
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Fig. 5. Flux ratio q=q0 versus Ks=Kg for Nu ¼ 1, ks=kg ¼ 5900, L=d ¼ 9:7, and
m ¼ 30%. Circles are thermal simulations; for these data, Ks and Kg are evaluated
with the average granular temperature H and volume fraction m in the cell, using
Eqs. (7) and (4), respectively. The top dashed line is the prediction of Eq. (19), in
which wall-induced spatial oscillations are ignored. This clearly fails. The bottom
dotted line is a model in which spatial oscillations derive from the HAB theory of
Eqs. (27)–(31), but where heat is artificially barred from conducting through the
spheres, ks ¼ kgns ¼ 0 in Eq. (4), despite Bi� 1. This fails as well. The solid line is
our recommended model, which incorporates spatial oscillations of Ia in ~H and the
mixture conductivity from Eqs. (4) and (32). Such oscillations make it necessary to
solve Eqs. (1) and (2) numerically. The upper bound of simulated Ks=Kg is limited by
computation time, which grows with f, fc, Fo�1, or Ks .
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fines Nueff , ~q denotes the flux calculated with spatial oscillations in
Im and Ia, and q without. To evaluate Nueff , we integrate Eqs. (1) and
(2) numerically as mentioned in the last paragraph of Section 3.2.

Fig. 6 shows how Nueff=Nu varies with m. In the range
0 6 m 6 0:5 and L=d P 5, the following expression conveniently
captures this prediction to a relative error <2%:

Nueff

Nu
	 1þ mð1� e�L=L0 Þðbm þ ammÞ

1þ mð1� e�L=L0 Þðdm þ cmmÞ
; ð48Þ

where L0=d 	 12:8, am 	 1385, bm 	 230, cm 	 4370, and dm 	 327.
Spatial oscillations reduce Nueff at remarkably low m. Nonetheless,
with a mixture conductivity given by Eq. (4), the wall heat transfer
is always enhanced at vanishing Biot number, 8m. This is because, to
lowest order, the flux ratio rises with m and L=d > 5 as
~q=q0 ¼ 1þ ½3þ ðbm � dmÞð1� e�L=L0 Þ=2þ NuðL=dÞ2
mþ oðm2Þ > 1.

Although Nueff was meant to capture ~q=q0 analytically for Bi� 1
in the exchange limit (Ks=Kg !1, or Da! 0), it is also a good
approximation for any Damköhler ratio. For example, substituting
Nueff from Eq. (48) for Nu in Eq. (16) yields a flux ratio ~q=q0 calcu-
lated from Eq. (19) with a relative error <4% at m ¼ 0:01 and <9% at
m ¼ 0:5.

As Fig. 5 illustrates, the wall heat flux is affected by gradient-
driven conduction through solid spheres. If such conduction was
suppressed by making ns ¼ 0 in Eq. (4), while artificially keeping
Bi� 1, then ~q=q0 would be under-predicted, as the dashed line
clearly shows. To capture this conduction within the spheres as
simply as possible, we assume that it is driven by rTg through
the mixture conductivity (4) in the energy equation for the fluid.
When spatial variations of the mixture conductivity are taken into
account by adopting Eq. (32), and when ~H is allowed to oscillate
near the wall through Ia in Eq. (37), our relatively simple model
agrees well with simulations (Fig. 5).

Nonetheless, the thermal simulations are crude for several rea-
sons. First, they ignore any coupling between particle and gas
velocities, and possible effects of the latter on convective heat
transfer between fluid and solids. Instead, they adopt a constant
heat transfer coefficient independent of local solid volume fraction
and particle-induced gas velocity fluctuations. Then, they simplify
the three-dimensional conjugate fluid-solid heat transfer problem
by privileging a gradient direction in each sphere, and by ignoring
fluid temperature gradients perpendicular to the y-axis.

Despite these simplications, they confirm that the local gradient
rTg and the local temperature difference ðTs � TgÞ simultaneously
play a role in setting the overall heat transfer flux. In particular,
they show that, in addition to the exchange carried by ðTs � TgÞ
through the locally available exchange surface area, the gradient
also drives a heat flux through the spheres that is well captured
by homogenization models, as long as the solid volume fraction
is allowed to oscillate in response to spatial ordering from the flat
thermal walls. At large Biot, they also provide a first taste of the
role of thermal history by revealing that the appropriate Fourier
number is based on the mean time of flight of the colliding spheres.

In the next sections, we attempt to refine our description of the
heat transfer between fluid and solid by adopting simple correc-
tions to the heat transfer coefficient h, and by correcting the
homogenized mixture conductivity with turbulent enhancements
driven by particle agitation. We will describe the experiments that
elicited these refinements in Part II.

3.4. Enhancements at high agitation

We apply the present analysis to situations in which particle
agitation is not derived from fluid velocity fluctuations. This is
the case, for example, when relatively dense suspensions of mas-
sive particles owe their fluctuation velocity to repeated collisions.
Such particles have a Stokes number St � qsd2

=18lso1, where
l is the fluid’s dynamic viscosity and s is a characteristic time of
the flow. We also restrict attention to situations without a mean
relative velocity between fluid and solids.

For massive particles in a gas at relatively large solid volume
fractions ðqs � qg; m > 0:05Þ, it is challenging to test our model
with experiments in the presence of gravitational accelerations.
To defeat gravity without imposing a relative velocity between
gas and solids, considerable agitation must be given to the parti-
cles. Although massive particles with Sto1 are not affected by
gas velocity fluctuations, their agitation can induce such fluctua-
tions in their wakes, thus augmenting the mixture conductivity
Kg in Eqs. (4) and (32), and raising the conductivity on which the
Nusselt number in Eq. (3) is based. An understanding of these ef-
fects requires a detailed model of gas-solid interactions. In dilute
turbulent suspensions, much progress has been made on two-
way coupling between gas and solids, which can either enhance
or reduce turbulent gas velocity fluctuations, and ultimately aug-
ment kg and Kg [35–41]. In the experiments described in Part II,
the suspension is too dense ðm > 0:06Þ and the Stokes number
too large ð430 < St < 16;000Þ for us to adopt this existing turbu-
lent framework.

A suitable model for the thermal exchange between grain and
gas must simultaneously account for the effects of high solid vol-
ume fraction and for a surrounding turbulence that is not gener-
ated by a mean relative velocity between solids and gas. Thus, in
contrast to the dilute ‘‘riser” flows considered by Louge, et al
[18], we do not expect correlations like Whitaker’s [42], which cor-
rect the infinite-fluid, pure-conduction result Nu ¼ 1 for small rel-
ative velocity between an isolated particle at rest and a steady gas
flow, to capture the role of high agitation on the source term by
increasing Nu with a particle Reynolds number based on

ffiffiffiffiffi
H
p

. In-
stead, as outlined next, we adopt Nu ¼ 1, account for gas velocity
fluctuations by augmenting the conductivity on which Nu is based,
and capture the role of high solid volume fraction through the mix-
ture conductivity. The experiments in Part II will test the merit of
this approach.

Verberg and Koch [43] conducted Lattice-Boltzmann numerical
simulations of spheres sheared a semi-infinite domain between
two bumpy boundaries to refine the expressions of Sangani et al.
[7,8] for the volumetric rate of dissipation of granular fluctuation
energy

cvis ¼
54mlH

d2 Rdissðm; �m;Re=
ffiffiffi
3
p
Þ ð49Þ

by providing the coefficient Rdiss in terms of m, a parameter
�m ¼ 9:76kg=d accounting for non-continuum lubrication between
colliding spheres in a gas of molecular mean free path kg, and a Rey-
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Fig. 7. Relative importance of augmentation mechanisms of q=q0 with high
agitation. Here we assume uniform H and m, but integrate Eqs. (1) and (2)
numerically using oscillating Im and Ia from Eqs. (29) and (31) near the walls. The
abscissa is Ks=Kg, where Kg is the static mixture conductivity given by Eq. (4) at the
bulk solid volume fraction m ¼ 0:195. Conditions are Pr ¼ 0:7, qgcg=qscs ¼ 7� 10�4,
ks=kg ¼ 5, and L=d ¼ 7:9, corresponding to 3:2 mm acrylic spheres in a box of
L ¼ 25:4 mm filled with air. From top to bottom: the thin solid line marks the
recommended model, which substitutes Kgt for Kg, bases the Nusselt number on kgt ,
and implements the Biot-Fourier correction of Eq. (38); the dotted line bases Nu on
kg instead, but still substitutes Kgt for Kg; the dashed line uses Kg, but bases Nu on
kgt; the thick horizontal asymptote ignores all augmentation mechanisms ðkt ¼ 0Þ
and takes Bi ¼ 0. Under these conditions, high-agitation augmentation mechanisms
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nolds number based on
ffiffiffiffiffi
H
p

and d. Combining Eqs. (5) and (7), this
particle Reynolds number is

Reffiffiffi
3
p ¼ 9

ffiffiffiffi
p
p

g12

Pr
qgcg

qscs

� �
fMðm; nsÞ �

Ks

Kg

� �
ð1þ 2KnÞLes; ð50Þ

where fM is defined in Eq. (4) and is evaluated at the bulk m.
Verberg and Koch [43] also measured the dimensionless Rey-

nolds stress �u0iu
0
j=½dCu=2
2 and granular temperatureffiffiffiffiffi

H
p

=½dCu=2
, where u0i is the gas fluctuation velocity in the carte-
sian direction i and Cu is the applied strain rate. They found that
both quantities are proportional to the ratio Stc=Rdiss, where
Stc � qsd

2Cu=18l, so the Reynolds stress scales as

qgu0iu
0
j ¼ �xqgH

1=2 oui

oxj
þ ouj

oxi

� �
d; ð51Þ

where x is a constant expected to depend on m; they reported
x ¼ 0:037ðþ0:014;�0:010Þ at m ¼ 0:3 with i and j in the flow and
gradient directions, respectively.

To model the augmentation of kg by gas velocity fluctuations,
we invoke ‘‘Reynolds’ analogy” and write

kgt ¼ kg þ kt; ð52Þ

where

kt

qgcg

 !
¼
ðlt=qgÞ

Prt
ð53Þ

is the additional heat diffusivity induced by gas velocity fluctuation,
Prt ’ 0:9 is a turbulent Prandtl number [18], and lt is an eddy vis-
cosity defined as

qgu0iu
0
j ¼ �lt

oui

oxj
þ ouj

oxi

� �
: ð54Þ

Combining Eqs. (51), (53) and (54), and eliminating H in terms of Ks

using Eqs. (5) and (7), we find

kt

kg
¼ x

9
ffiffiffiffi
p
p

Les

Prt

qgcg

qscs

� �
fMðm; nsÞg12 � ð1þ 2KnÞ Ks

Kg

� �
: ð55Þ

This equation reveals that, unless qgcg=qscs nearly vanishes (as it
would, for example, under the low atmospheric pressure of Mars),
solid velocity fluctuations affect heat transfer in the exchange limit
by raising the conductivity of the gas to kgt . In the limit of small so-
lid volume fractions, Eq. (55) reduces to

lim
m!0

kt

kg
¼ x

ffiffiffiffiffi
H
p

d
Prtðkg=qgcgÞ

: ð56Þ

Because particle-induced gas transport coefficients should vanish as
solids disappear, we expect that kt ! 0 as m! 0. Because H does
not tend to zero in that limit, x should vary with m, and vanish with
it. In the absence of published data for xðmÞ, we assume x / m and
adopt the value that Verberg and Koch [43] measured at m ¼ 0:3 i.e.,
x ¼ m� 0:037=0:3. Our thermal measurements in Part II will test
the merit of this simple expression for x.

Therefore, in our view, high particle agitation has three princi-
pal effects on the exchange limit. First, it increases the source term,
so that kgt must be substituted for kg in Eq. (16) for Ly (but not in Eq.
(19), where kg represents the molecular conductivity of pure gas).
Second, the Biot number increases to ðkgt=ksÞ Nu, possibly leading
to significant corrections of ~H calculated with Eq. (38). Third, the
mixture conductivity Kg rises to a new Kgt , which we model as in
Eq. (4),

Kgt ¼ kgtfMðm; nstÞ; ð57Þ
where nst � ks=kgt , and which we substitute wherever Kg appears in
Eqs. (1), (16), (18) and (19).

Near the wall, where m oscillates, we replace ~Kg by ~Kgt as shown
in Eq. (32). To account for these oscillations, we integrate once
again Eqs. (1) and (2) numerically along y with MATLAB’s bvp4c using
kgt and Kgt instead of kg and Kg, respectively. Because gas velocity
fluctuations diffuse on a length scale on the order of d, we ignore
fluctuations of ~m to evaluate kt, but instead use the bulk solid vol-
ume fraction in Eq. (55). Fig. 7 illustrates the results and shows the
relative importance of raising kg to kgt and Kg to Kgt . Notably, we
find that numerical integration can be avoided by capturing spatial
oscillations using the effective Nueff in Eq. (48), while substituting
kgt for kg in Eq. (16) and Kgt for Kg in Eqs. (16) and (19). For condi-
tions of Fig. 7, this approximation for q=q0 has relative error <8%.

3.5. Enhancement limitations

In principle, enhancements of q=q0 induced by high solids agita-
tion rise ad infinitum with Ks=Kg. However, as the following calcu-
lation shows, collisional dissipation limits practical values of
granular temperature, and thus Ks, which may be achieved away
from boundaries that impart agitation on the grains. In Part II,
we will describe a model for solids agitation in the vibrated box.
We adopt a simpler approach here. In the absence of gravity, stress
work or convection, the balance of fluctuation energy for nearly
elastic, frictionless spheres experiencing instantaneous, binary col-
lisions in a semi-infinite domain bounded by a wall of normal z is

0 ¼ � d
dz
�j

dH
dz

� �
� c; ð58Þ

where j ¼ ð4=
ffiffiffiffi
p
p
ÞMqsm2g12d

ffiffiffiffiffi
H
p

is the conductivity of granular
fluctuation energy, M ¼ 1þ ð9p=32Þ½1þ 5=ð12mg12Þ


2,
c ¼ ð12=

ffiffiffiffi
p
p
Þð1� e2Þqsm2g12H

3=2=d is the volumetric rate of colli-
sional dissipation, and 0 6 e < 1 is a dimensionless kinematic coef-
ficient characterizing the incomplete post-impact restitution of the
normal component of the relative velocity of two colliding grains
[44]. (In our experiments of Part II, the dissipation of granular fluc-
tuation energy by the gas can be neglected in Eq. (58) i.e., cvis � c).
become significant at Ks=Kg > 65, where Re > 4:5 and St > 1900.
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Defining the dimensionless distance z� � z=d from an energetic wall
at granular temperature H0 and the dimensionless fluctuation
velocity w� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H=H0

p
, and assuming an invariant m, Eq. (58) can

be written d2w�3=dz�2 ¼ 9ð1� e2Þw�3=2M. Its solution
w� ¼ exp½�z�=‘�
 decays from the wall on a dimensionless length
scale ‘� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=ð1� e2Þ

p
, which decreases with denser m and lower

e. ‘� is relatively small for values of e typical of real sphere materials.
For example, at m ¼ 5% and e ¼ 0:9, ‘� 	 26; at m ¼ 30%, it is down
to ‘� 	 6.

Beyond a distance from the wall z > d� ‘�, the granular med-
ium is unlikely to have sufficient agitation to augment ~Kg and kg,
or perhaps to remain in the exchange limit. In practical situations,
our thermal analysis must be coupled to granular mechanics equa-
tions describing the profiles of H and m [9], which, for simplicity,
we have taken to be constant in Part I, but will revisit in greater de-
tail in Part II.
4. Conclusions

In Part I, we outlined a theory for the enhancement of heat
transfer through a flat thermal wall bounding a homogeneous sus-
pension of agitated spherical grains in a fluid. The theory is based
on explicit hypotheses and independently measurable material
parameters. Its crucial assumption is that grains do not exchange
any thermal energy during their ephemeral contacts with each
other or with the wall. However, their presence enhances heat
transfer by modifying the mixture conductivity and by steepening
the fluid temperature gradient at the wall. The steepening is the
result of a competition between thermal self-diffusion of the
grains and their exchange of heat with the surrounding fluid,
which is arbitrated by a Damköhler second ratio. Self-diffusion is
a process that is not driven by a gradient of particle concentration,
but rather by grain agitation. It gives rise to conduction through
the solid phase if the latter possesses a thermal temperature
gradient.

At high values of Da, which we call the ‘‘diffusion limit,” the
enhancement is governed by granular self-diffusion. The diffusion
limit is relevant to small particles or low agitation. At low values of
Da, which we call the ‘‘exchange limit,” the volumetric rate of heat
exchange dominates. We derived expressions for this exchange up
to Biot numbers � oð10Þ, and tested these in crude, but instructive
numerical simulations.

We showed that the ordering imposed by the flat thermal wall
affects heat transfer by changing the local mixture conductivity
and volume exchange rate between fluid and solids. It remains to
establish whether these spatial oscillations affect the thermal
self-diffusion of the grains as well. Because the wall affects the
velocity distribution function in its neighborhood [45], it may
change the form of the self-diffusivity in Eq. (5). Unfortunately,
to our knowledge, no kinetic theory has yet captured this effect,
which may be responsible for deviations of the model from numer-
ical simulations at low Ks=Kg in Fig. 5.

Finally, we showed that heat transfer in the exchange limit can
be further augmented by granular agitation, if the latter is intense
enough to induce velocity fluctuations in the gas. We proposed a
model for such augmentation that is based on the measurements
of Verberg and Koch [43] in Lattice-Boltzmann numerical simula-
tions of dense suspensions. In this model, we replaced the molec-
ular conductivity of the gas by a higher conductivity arising from
particle-induced gas velocity fluctuations. Part II will test the merit
of this approach using experiments with grains vibrated in a box in
air, for which such particle-induced augmentation of conductivity
must be taken into account. Part III will focus on the diffusion limit,
which is relevant to colloidal suspensions or to experiments in
microgravity.
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